适用
h2o-genmodel-ext-xgboost-3.36.1.5-all.jar
声明:资源链接索引至第三方,平台不作任何存储,仅提供信息检索服务,若有版权问题,请https://help.coders100.com提交工单反馈
h2o-genmodel-ext-xgboost-3.36.1.5-all.jar 是一个包含 H2O GenModel 扩展库的 Java 包。这个包提供了 XGBoost 算法,这是一种基于梯度提升的机器学习算法,用于解决回归、分类和聚类问题。
XGBoost 是一种高效的决策树算法,它通过在每个节点上计算损失函数的梯度来优化模型参数。与随机梯度下降(SGD)相比,XGBoost 具有更快的收敛速度和更高的准确率。此外,XGBoost 还支持并行计算,可以在多核处理器上进行加速。
使用 h2o-genmodel-ext-xgboost-3.36.1.5-all.jar 时,需要首先将该包添加到项目的依赖中。然后,可以使用 XGBoost 算法构建和训练机器学习模型。例如,可以使用以下代码创建一个线性回归模型:
```java
import org.apache.h2o.Genomics;
import org.apache.h2o.GenomicsOptions;
import org.apache.h2o.ml.classification.RandomForestClassifier;
import org.apache.h2o.ml.evaluation.Evaluation;
import org.apache.h2o.ml.evaluation.EvaluationContext;
import org.apache.h2o.ml.evaluation.Prediction;
import org.apache.h2o.ml.evaluation.RegressionEvaluation;
import org.apache.h2o.ml.evaluation.RegressionEvaluationContext;
import org.apache.h2o.ml.evaluation.RegressionEvaluator;
import org.apache.h2o.ml.evaluation.RegressionEvaluatorBuilder;
import org.apache.h2o.ml.evaluation.RegressionEvaluator;
import org.apache.h2o.ml.evaluation.RegressionEvaluatorBuilder;
import org.apache.h2o.ml.tuning.ParamGrid;
import org.apache.h2o.ml.tuning.ParamGridBuilder;
import org.apache.h2o.ml.tuning.CrossValidator;
import org.apache.h2o.ml.tuning.CrossValidatorBuilder;
import org.apache.h2o.ml.tuning.HyperparameterOptimizer;
import org.apache.h2o.ml.tuning.HyperparameterOptimizerBuilder;
import org.apache.h2o.ml.tuning.CrossValidation;
import org.apache.h2o.ml.tuning.CrossValidationBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParams;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o
XGBoost 是一种高效的决策树算法,它通过在每个节点上计算损失函数的梯度来优化模型参数。与随机梯度下降(SGD)相比,XGBoost 具有更快的收敛速度和更高的准确率。此外,XGBoost 还支持并行计算,可以在多核处理器上进行加速。
使用 h2o-genmodel-ext-xgboost-3.36.1.5-all.jar 时,需要首先将该包添加到项目的依赖中。然后,可以使用 XGBoost 算法构建和训练机器学习模型。例如,可以使用以下代码创建一个线性回归模型:
```java
import org.apache.h2o.Genomics;
import org.apache.h2o.GenomicsOptions;
import org.apache.h2o.ml.classification.RandomForestClassifier;
import org.apache.h2o.ml.evaluation.Evaluation;
import org.apache.h2o.ml.evaluation.EvaluationContext;
import org.apache.h2o.ml.evaluation.Prediction;
import org.apache.h2o.ml.evaluation.RegressionEvaluation;
import org.apache.h2o.ml.evaluation.RegressionEvaluationContext;
import org.apache.h2o.ml.evaluation.RegressionEvaluator;
import org.apache.h2o.ml.evaluation.RegressionEvaluatorBuilder;
import org.apache.h2o.ml.evaluation.RegressionEvaluator;
import org.apache.h2o.ml.evaluation.RegressionEvaluatorBuilder;
import org.apache.h2o.ml.tuning.ParamGrid;
import org.apache.h2o.ml.tuning.ParamGridBuilder;
import org.apache.h2o.ml.tuning.CrossValidator;
import org.apache.h2o.ml.tuning.CrossValidatorBuilder;
import org.apache.h2o.ml.tuning.HyperparameterOptimizer;
import org.apache.h2o.ml.tuning.HyperparameterOptimizerBuilder;
import org.apache.h2o.ml.tuning.CrossValidation;
import org.apache.h2o.ml.tuning.CrossValidationBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParams;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o.ml.tuning.CrossValidationParamsBuilder;
import org.apache.h2o
-
h2o-genmodel-ext-xgboost-3.26.0.5-test.jar
- 2025-06-18 00:05:52
-
通天西游(手游电脑版)
- 2025-06-18 00:57:52
-
h2o-genmodel-ext-xgboost-3.26.0.6-test.jar
- 2025-06-18 01:05:32
-
algol68g-debugsource-3.5.15-1.el9.aarch64
- 2025-06-18 01:25:13
-
algol68g-debugsource-3.5.15-1.el9.s390x
- 2025-06-18 01:25:35
-
h2o-genmodel-ext-xgboost-3.26.0.8-test.jar
- 2025-06-18 02:05:24
-
RdRand-2.1.6-1.el10_1.x86_64
- 2025-06-18 02:25:10
-
RdRand-debuginfo-2.1.6-1.el10_1.x86_64
- 2025-06-18 02:25:45
-
h2o-genmodel-ext-xgboost-3.26.0.9-test.jar
- 2025-06-18 03:05:18
-
h2o-genmodel-ext-xgboost-3.28.0.1-test.jar
- 2025-06-18 04:05:29
-
RdRand-debugsource-2.1.6-1.el10_1.x86_64
- 2025-06-18 04:25:10
-
RdRand-devel-2.1.6-1.el10_1.x86_64
- 2025-06-18 04:25:42
-
h2o-genmodel-ext-xgboost-3.28.0.2-test.jar
- 2025-06-18 05:05:17
-
ansible-collection-community-general-10.7.0-1.el10_1.noarch
- 2025-06-18 05:25:13
-
ansible-collection-community-general-10.7.0-1.el10_1.noarch
- 2025-06-18 05:25:39
-
h2o-genmodel-ext-xgboost-3.28.0.3-test.jar
- 2025-06-18 06:05:51
-
h2o-genmodel-ext-xgboost-3.28.0.4-test.jar
- 2025-06-18 07:05:14
-
ansible-collection-community-general-10.7.0-1.el10_1.noarch
- 2025-06-18 07:25:11
-
ansible-collection-community-general-10.7.0-1.el10_1.noarch
- 2025-06-18 07:25:41
-
大富豪3(手游电脑版)
- 2025-06-18 07:34:01
-
h2o-genmodel-ext-xgboost-3.28.1.1-test.jar
- 2025-06-18 08:05:19
访问申明(访问视为同意此申明)
2.如有索引链接发生失效情况请【联系客服】自助退回)
3.是否访问均为用户自主行为,本站只提供搜索服务不提供技术支持,感谢您的支持