适用
h2o-app-3.30.0.4-test.jar
声明:资源链接索引至第三方,平台不作任何存储,仅提供信息检索服务,若有版权问题,请https://help.coders100.com提交工单反馈
H2O是一个开源的机器学习库,用于处理大规模数据集。在这个问题中,我们需要安装并配置H2O环境。首先,我们需要下载H2O的jar文件,然后将其添加到Java项目的类路径中。
以下是详细的步骤:
1. 访问H2O官方网站(https://h2o-release.s3.amazonaws.com/)并下载最新版本的H2O jar文件。在这个例子中,我们使用的是h2o-app-3.30.0.4-test.jar。
2. 将下载的jar文件复制到Java项目的classpath目录下。例如,如果Java项目位于`C:\Users\username\Documents\MyProject`,则可以将jar文件复制到`C:\Users\username\Documents\MyProject\lib`目录。
3. 确保Java项目的类路径中包含H2O的相关依赖。在`pom.xml`文件中添加以下依赖:
4. 在Java项目中创建一个H2O实例,并加载数据进行训练。例如:
```java
import org.apache.h2o.conf.Configuration;
import org.apache.h2o.estimator.Estimator;
import org.apache.h2o.estimator.model.Model;
import org.apache.h2o.estimator.model.modelbuilder.ModelBuilder;
import org.apache.h2o.estimator.trainer.Trainer;
import org.apache.h2o.estimator.trainer.TrainingConfig;
import org.apache.h2o.estimator.training.Data;
import org.apache.h2o.estimator.training.TrainingEnvironment;
import org.apache.h2o.estimator.training.TrainingInput;
import org.apache.h2o.estimator.training.TrainingOutput;
import org.apache.h2o.io.formats.csv.CSVReader;
import org.apache.h2o.ml.evaluation.EvaluationEvaluator;
import org.apache.h2o.ml.evaluation.EvaluationEvaluatorBuilder;
import org.apache.h2o.ml.evaluation.PredictionEvaluator;
import org.apache.h2o.ml.evaluation.PredictionEvaluatorBuilder;
// ...
// 加载数据并进行预处理
Data data = new CSVReader(new File("data.csv"))
.setSniffer(new CustomSniffer()) // 自定义数据预处理器
.build();
// 创建模型构建器
ModelBuilder modelBuilder = new ModelBuilder()
.addParam("param1", "value1")
.addParam("param2", "value2");
// 创建模型和评估器
Model model = modelBuilder.build();
EvaluationEvaluator evaluationEvaluator = new EvaluationEvaluatorBuilder()
.setMetricName("accuracy") // 设置评估指标为准确率
.build();
// 创建训练环境
TrainingEnvironment trainingEnv = new TrainingEnvironment();
trainingEnv.setParameter(model, "param1", "value1");
trainingEnv.setParameter(model, "param2", "value2");
trainingEnv.setParameter(model, "param3", "value3");
// 创建训练输入和输出
TrainingInput trainingInput = new TrainingInput();
trainingInput.addFeatures(data);
trainingInput.addLabels(data.getLabel());
trainingInput.setNumSamples(data.getNumSamples());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumClasses(data.getNumClasses());
trainingInput.setNumFeatures(data.getNumFeatures());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumClasses(data.getNumClasses());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.test); // 使用测试数据作为输入
trainingInput.setNumSamples(1000); // 设置训练样本数为1
以下是详细的步骤:
1. 访问H2O官方网站(https://h2o-release.s3.amazonaws.com/)并下载最新版本的H2O jar文件。在这个例子中,我们使用的是h2o-app-3.30.0.4-test.jar。
2. 将下载的jar文件复制到Java项目的classpath目录下。例如,如果Java项目位于`C:\Users\username\Documents\MyProject`,则可以将jar文件复制到`C:\Users\username\Documents\MyProject\lib`目录。
3. 确保Java项目的类路径中包含H2O的相关依赖。在`pom.xml`文件中添加以下依赖:
org.apache.h2o
h2o-core
3.30.0.4
4. 在Java项目中创建一个H2O实例,并加载数据进行训练。例如:
```java
import org.apache.h2o.conf.Configuration;
import org.apache.h2o.estimator.Estimator;
import org.apache.h2o.estimator.model.Model;
import org.apache.h2o.estimator.model.modelbuilder.ModelBuilder;
import org.apache.h2o.estimator.trainer.Trainer;
import org.apache.h2o.estimator.trainer.TrainingConfig;
import org.apache.h2o.estimator.training.Data;
import org.apache.h2o.estimator.training.TrainingEnvironment;
import org.apache.h2o.estimator.training.TrainingInput;
import org.apache.h2o.estimator.training.TrainingOutput;
import org.apache.h2o.io.formats.csv.CSVReader;
import org.apache.h2o.ml.evaluation.EvaluationEvaluator;
import org.apache.h2o.ml.evaluation.EvaluationEvaluatorBuilder;
import org.apache.h2o.ml.evaluation.PredictionEvaluator;
import org.apache.h2o.ml.evaluation.PredictionEvaluatorBuilder;
// ...
// 加载数据并进行预处理
Data data = new CSVReader(new File("data.csv"))
.setSniffer(new CustomSniffer()) // 自定义数据预处理器
.build();
// 创建模型构建器
ModelBuilder modelBuilder = new ModelBuilder()
.addParam("param1", "value1")
.addParam("param2", "value2");
// 创建模型和评估器
Model model = modelBuilder.build();
EvaluationEvaluator evaluationEvaluator = new EvaluationEvaluatorBuilder()
.setMetricName("accuracy") // 设置评估指标为准确率
.build();
// 创建训练环境
TrainingEnvironment trainingEnv = new TrainingEnvironment();
trainingEnv.setParameter(model, "param1", "value1");
trainingEnv.setParameter(model, "param2", "value2");
trainingEnv.setParameter(model, "param3", "value3");
// 创建训练输入和输出
TrainingInput trainingInput = new TrainingInput();
trainingInput.addFeatures(data);
trainingInput.addLabels(data.getLabel());
trainingInput.setNumSamples(data.getNumSamples());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumClasses(data.getNumClasses());
trainingInput.setNumFeatures(data.getNumFeatures());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumClasses(data.getNumClasses());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.getNumRows());
trainingInput.setNumRows(data.test); // 使用测试数据作为输入
trainingInput.setNumSamples(1000); // 设置训练样本数为1
-
h2o-ext-jython-cfunc-3.22.1.5-test.jar
- 2025-05-06 00:06:46
- 积分:1
-
醉玲珑(手游电脑版)
- 2025-05-06 00:26:37
- 积分:1
-
十万个冷笑话番剧版(手游电脑版)
- 2025-05-06 00:35:26
- 积分:1
-
魔法禁书目录(手游电脑版)
- 2025-05-06 00:43:07
- 积分:1
-
Movie Studio 14
- 2025-05-06 00:50:04
- 积分:1
-
剑与家园(手游电脑版)
- 2025-05-06 01:02:55
- 积分:1
-
h2o-ext-jython-cfunc-3.22.1.6-test.jar
- 2025-05-06 01:05:56
- 积分:1
-
天天二次元模拟器
- 2025-05-06 01:17:19
- 积分:1
-
avahi-debugsource-0.8-16.mga10.x86_64
- 2025-05-06 01:25:12
- 积分:1
-
avahi-debugsource-0.8-16.mga10.aarch64
- 2025-05-06 01:25:40
- 积分:1
-
Snipaste
- 2025-05-06 01:41:40
- 积分:2
-
h2o-ext-jython-cfunc-3.24.0.1-test.jar
- 2025-05-06 02:05:25
- 积分:1
-
王牌飞行团(手游电脑版)
- 2025-05-06 02:17:32
- 积分:1
-
悬空城(手游电脑版)
- 2025-05-06 02:42:45
- 积分:1
-
h2o-ext-jython-cfunc-3.24.0.2-test.jar
- 2025-05-06 03:05:22
- 积分:1
-
nTrun
- 2025-05-06 03:17:48
- 积分:1
-
0ad-0.27.0-3.mga10.armv7hl
- 2025-05-06 03:25:13
- 积分:1
-
0ad-0.27.0-3.mga10.i686
- 2025-05-06 03:25:33
- 积分:1
-
元气封神(手游电脑版)
- 2025-05-06 03:25:50
- 积分:1
-
口袋妖怪NS(手游电脑版)
- 2025-05-06 03:33:58
- 积分:1
-
灵妖记(手游电脑版)
- 2025-05-06 03:41:43
- 积分:1
访问申明(访问视为同意此申明)
2.部分网络用户分享TXT文件内容为网盘地址有可能会失效或其他任何情况(此类多为视频教程,如发生失效情况【联系客服】自助退回)
3.请多看看评论和内容介绍大数据情况下资源并不能保证每一条都是完美的资源
4.当访问文件因格式错误无法正常识别打开时,请尝试将文件扩展名改成 zip 然后再解压 试试哦(若文件可以正常打开请忽略此建议)
5.是否访问均为用户自主行为,本站只提供搜索服务不提供技术支持,感谢您的支持